Willkommen Welcome Bienvenue



# DiPrintProtect - Digitally printed temporary protective films for application in the watch industry

Annual Review Meeting 2024

Empa: Vitor Vlnieska, Jakob Heier, Yaroslav Romanyuk ETHZ: Mark Tibbit, Morris Wolf EPFL: Yves Letterier, Alper Balkan



### Motivation: Industry needs

### **ASRH**

RECHERCHE HORLOGERE COMMUNAUTAIRE Swiss Association for Horological Research

### Replace manual coating



### Increase coating precision



# Challenges

How to print photopolymers?



1. Digital printing:

- High resolution, precision, and throughput

- Maskless printing

How to remove (non-contact)?

# Challenges

#### How to print photopolymers?

#### How to remove (non-contact)?



1. Digital printing:

- High resolution, precision, and throughput
- Maskless printing

2. Photo-reversible polymers as inks:

- Polymerization for hardening and adhesion
- Depolymerization for peeling of

# Challenges

#### How to print photopolymers?

#### How to remove (non-contact)?



1. Digital printing:

- High resolution, precision, and throughput
- Maskless printing

2. Photo-reversible polymers as - Thermal release inks:

- Polymerization for hardening and adhesion
- Depolymerization for peeling of

- 3. Non-contact removal:

  - Flash lamp annealing

### **DiPrintProtect - Overview**



### Photo-reversible polymer 1:



Prof. Dr. Mark Morris Tibbitt Wolf

**ETH** zürich

### PEGdiPDA hydrogel (water based)





Non-toxic chemistry Depolymerization works in minutes Adhesion to metalic substrates is an issue



# **Digital Printing**

### Standard test printing



| AJP – satellite | droplet |
|-----------------|---------|
|-----------------|---------|

Liquid phase (coating region)

Solid phase (satellite droplets)



|   |                            | АЈР          | Inkjet       | Dispensing   | Spraying     |
|---|----------------------------|--------------|--------------|--------------|--------------|
|   | Ink                        |              |              |              |              |
| t | Bitumen                    | Х            | ✓            | ✓            | ✓            |
|   | Berlacryl                  | Х            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|   | Zappon                     | $\checkmark$ | $\checkmark$ | ✓            | $\checkmark$ |
|   | Polyolefin                 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|   | PVA                        | $\checkmark$ | ✓            | ✓            | $\checkmark$ |
|   | Aryl epoxy<br>photopolymer | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

Most of the chemical formulations are printable

AJP present satellite droplets

# Examples Aerosol Jet Printing (AJP)

#### Watch dial demonstrator

### Line printing test



Aryl epoxy photopolymer printed with AJP



### AJ-3D printing of photopolymer



Vlnieska, V., et al. Polymers 2022, 14, 3411.

# Combination AJP + dispensing





AJP

3.4

35

8

11





### Lessons learned

- How to print Photopolymers:
  - Digital printing possible w/ linewidth down to 30 microns
  - Wide selection of commercial & in-house polymers tested
  - Flat and curved substrates
- Photo-reversible polymers:
  - PEGdiPDA hydrogels: de-polymerization ~10 min
  - Cinnamates: incomplete de-polymerization after 4 hours
- Non-contact removal:
  - Not achieved yet
  - Flash lamp annealing (FLA) decomposes most polymers before delamination
  - Thermally-induced release ongoing



