#### EHzürich



# LPBF of Ceramics - graded porosity, self healing FUORCLAM impact 14. Februar 2024

Konrad Wegener, Thomas Graule, Stefan Pfeiffer, Fabrizio Verga



#### FUORCLAM - Fundamental Understanding of Oxide Refractory Ceramics in Laser Additive Manufacturing





#### **Powder preparation**

- Spray granulation to increase powder flowability and packing density
- Addition of metal-oxides nanoparticles for improving laser absorption
- Development of new material system for crack reduction



#### **ETH** zürich





- **Material characterization**
- Characterization of the starting powder
- Characterization of the SLM alumina parts
- Operando studies of SLM of alumina

Intercept of competences

# PAUL SCHERRER INSTITUT

Helena Van Swygenhoven Makowska Malgorzata



**Konrad Wegener Fabrizio Verga** Florio Kevin





#### **ETH** zürich Laser processing



- Finding processing window for different lasers and material combinations
- Comparison of pulsed and continuous wave laser and different wavelengths for improving laser absorption

Optimize processing parameters for increasing density and crack reduction



## 2 PBF-LB of ATZ

• Part density up to 95%



Good geometrical freedom



Example of free form fabrication achieved during the project.

Material: ATZ (80 wg%  $ZrO_2 - 20$  wg%  $Al_2O_3$ ) Laser source: Nd:YAG-laser



#### 2 PBF-LB of ATZ



## Reduction of CTE

- Ammonium citrate dibasic is a suitable dispersant for used powders (Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, MnO<sub>2</sub>/Mn<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, (WO<sub>3</sub>) and ZrO<sub>2</sub>)
- Production of powders with high apparent, tapped density and good flowability possible (spray-dried granules with bimodal distribution (McGeary), addition of coarse Al<sub>2</sub>O<sub>3</sub> particles and thermal pre-treatment)
  → Highest achieved part density of 98.6%
- Severe crack formation by laser processing of powders with 0.7 vol% and 10 vol% black TiO<sub>2-x</sub> due to lack of sufficient in-situ formed Al<sub>2</sub>TiO<sub>5</sub>
- Crack reduction with 50 mol%TiO<sub>2-x</sub> and 96.9 or 50 vol% ZrO<sub>2</sub>/WO<sub>3</sub> granules possible
- Achieved part properties:

**ETH** zürich

|                            | 50 mol% TiO <sub>2-x</sub> | 96.9 vol% ZrO <sub>2</sub> /WO <sub>3</sub><br>granules | 50 vol% ZrO <sub>2</sub> /WO <sub>3</sub><br>granules |
|----------------------------|----------------------------|---------------------------------------------------------|-------------------------------------------------------|
| Relative part density [%]  | 96.5                       | 95.7                                                    | 95.7                                                  |
| Compressive strength [MPa] | 346.6 ± 47.9               | 327.9 ± 52.1                                            | 498.0 ± 89.3                                          |
| Youngʻs modulus [GPa]      | 90.2                       | 51.3                                                    | 99.7                                                  |



#### **Gradient structure**

- Example of porosity, controlled by varying laser scan speed and hatch distance
- High flexibility on gradient porosity direction



Porosity induced by scan speed, Fe<sub>2</sub>O<sub>3</sub> dopant



| Scan speed                   | 10 mm/s | 5 mm/s | 2 mm/s |
|------------------------------|---------|--------|--------|
| Density                      | 68 %    | 86 %   | 96 %   |
| Tomography at<br>synchrotron |         |        |        |



Healing particles: SiC, TiC, Ti ...

Intrinsic self healing: the matrix can actively ٠ heal by oxidation reaction.

Intrinsic healing ceramic: Ti<sub>2</sub>AIC, Cr<sub>2</sub>AIC

The healing occurs if  $V_{MOx} > V_{MC}$ 

 $V_{MC}$ : volume of the healing agent  $V_{MOx}$ : volume of the healing product

**ETH** zürich

### 3.1 Laser processing





Example of cubes used for the parameter investigation.

CO<sub>2</sub>-laser and Nd:YAG-laser are compared.

A set for parameters exists for both laser lights enabling densities of  $\approx 95\%$  TD, however the CO<sub>2</sub>-laser achieves more steady results consistently achieving higher part densities for different parameter sets.

### 3.1 Laser processing

 $CO_2$ -laser => Conduction welding mode



Nd:YAG-laser => Keyhole welding mode



Micro CT-scan, the TiC is visible in purple. The TiC segregates in within the melt pool. This phenomena decreases the homogeneity of healing particles dispersion.



- Within 200 µm from the surface cracks a phase fills the cracks.
- On the upper surface, the surface scanned by the laser, present larger not healed crack.
- Towards the surface the TiC concertation is lower because of the segregation.



10 mm

• Heat treatment in air at 900°C for 3h



- The healing was effective in the depth of a cube of 10 mm × 10 mm × 10 mm.
- The self-healing effect is present also within the most inner part of the samples tested.





Measured amount of  $\mathrm{TiO}_2$  within the section of the cube





Healing process diffusion and reaction dependent → follows Arrhenius equation Healing seals off oxygen contact Slow enough healing at low temperatures enables deep penetration of oxygen into the sample

ETH Zürich Doctoral examination - Fabrizio Verga



- Crystal are growing within the artificial crack
- Oxide grows as a needle like structure from TiC
- TiC oxidises into rutile





## **Results of Fuorclam**

- 3 PhD theses: Stefan Pfeiffer, Kevin Florio, Fabrizio Verga
- 3 directions of Exploration into direct LPBF of Ceramics
  - bimodal particle size distribution with nanoparticles for partial melting
  - ceramic alloying with reduced CTE: addition of ZrO2/WO3 → ZrW2O8 TiO2/Al2O3 → Al2TiO5
  - self healing ceramics: addition of TiC
    TiC + 2O2 → TiO2 + CO2 + volume expansion
- Enabler for creating thick-walled parts in LPBF
- ► → powder preprocessing is crucial
- $\rightarrow$  beam wavelength, absorption enabling dopants
- Scientific methodology to observe phase change in situ in LPBF
- Generating a novel methodology to create materials with graded density and strength
- Industrial collaboration are already in place for a successful implementation of the Al<sub>2</sub>O<sub>3</sub> – TiC ceramic





# **ETH** zürich



15