

SFA Annual Review Meeting 14 Feb 2024

MANUFHAPTICS

Manufacturing of Actuators Integrated in Active Exoskeletons

Presented by Prof. Herbert Shea on behalf of the consortium

Dexmo

Capio exoskeleton

MANUFHAPTICS

We develop AM techniques to build customized **soft** actuators for wearable soft exoskeletons

MANUFHAPTICS

We are developing AM techniques to build **soft** actuators in elastomer exoskeletons

We develop an additively-manufactured glove with printed actuators for both kinesthetic and cutaneous haptics

Tasks

- New inks & materials
- Multimaterial Printing methods
- Design of electrostatic actuator
- Integration process and sizing.

- EPFL Soft Transducers Lab (H. Shea)
- ETHZ Complex Materials Lab (A. Studart)
- ETHZ Soft Materials Lab (J. Vermant)
- Empa Lab for Functional Polymers (D. Opris)

Glove overall Design

- A fully personalised glove, precisely conforming to the wearer's unique anatomy.
- Emphasis placed on:
 - i) ease of donning ,
 - ii) modularity to easily replace any part,
 - iii) force transmission
- A multi-axis multi-material 3D printer was built specifically for this task
- We developed several types of Linear Actuators
 - DEA stack
 - DEA fiber
 - Sliding electrostatic actuator

These devices require new materials for performance and for printability

Synthesis of inks for printing DEAs

tunable thixotropic and shear-thinning materials

Flow behaviour:

- Tuneability of inks' flow behaviour
- Matched yield stress
- Matched degree of shear thinning
- Similar wall slip behaviour
- P.M. Danner, T. Pleij, G. Siqueira, A.V. Bayles, T. Raman Venkatesan, J. Vermant, D.M. Opris, Adv. Funct. Mater. 2023, 2313167.
- P. Danner, et al. Patent, EP23161063, 2023.

High permittivity dielectrics 10^5 10^4 10^4 10^4 10^4 10^4 10^4 10^4 10^4 10^4 10^4 10^2 10^4 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^4 10^2 10^2 10^4 10^2 10^2

10³

6

5% actuation strain at 21 V/ μm

- P.M. Danner, T. Pleij, G. Siqueira, A.V. Bayles, T. Raman Venkatesan, J. Vermant, D.M. Opris, Adv. Funct. Mater. 2023, 2313167.
- P. Danner, et al. Patent, EP23161063, 2023.

Printing Structured Multilayer DEA Filaments

Flow-structuring approaches to print interdigitated, multi-layered, multi-material filaments

From Electronics to Extrusion: Adapting Boolean Logic to Model Fluid Flow and Design Material Assemblies.

A.V. Bayles, T.Pleij, et al. [submitted]

- → Engineering and predicting geometrically complex multi-material flow structures
- ightarrow Tool for advective assemblers' design

Advective Assembler-Enhanced Support Bath Rotational Direct Ink Writing.

T.Pleij, A.V.Bayles and J.Vermant [submitted]

- → Advective assemblers employed to print 3D multiink structures in sacrificial support bath
- → Hydrogel inks used to print differential-swelling helical actuators with multi-phase cross sections

Manufhaptics Objectives till June 2025

- **1.** Improve performance of fingertip and linear actuators
- 2. Mount actuators on the "core" printed glove and validate user experience
- Demonstrate integration of the three types of printed high-force flexible electrostatic actuators in a glove to enable force feedback

Contact: Prof. Herbert Shea EPFL-LMTS herbert.shea@epfl.ch

Partners

- EPFL Soft Transducers Lab
- ETHZ Complex Materials Lab
- ETHZ Soft Materials Lab
- Empa Lab for Functional Polymers

