

Volumetric 3D printing for Life Science applications

Paul Delrot, PhD CEO, Readily3D SA

paul@readily3d.com +41 22 570 14 82

Company information

- Spin-off from EPFL
- Located in Lausanne, Switzerland
- Founded in May 2020
- Commercializes tomographic 3D printers
- Focus on biofabrication

Layer-by-layer fabrication

- Low throughput
- Struts
- Design constraints
- Exposed resin

Volumetric 3D printing

✓ Ultra rapid (30s)

Watch video

- ✓ No supports (=low manual labor)
- Multi-centimeter scale
- Freeform structures (cavities, conduits,...)
- Contactless no contamination, no damage and no cleaning

Inspired by medical tomography

CT scanner

Radon transform (relates an object and its projections)

Illustration of the Radon transform in medical imaging

Object 3DBenchy by Creative Tools, license CC BY ND 4.0

Illustration of the Radon transform in volumetric 3D printing

3D Model 3DBenchy by Creative Tools, license CC BY ND 4.0

Tomographic 3D printing process

Open platform compatible with many materials

Any transparent to translucent photopolymers:

- Hydrogels (acellular/cell-laden)
- Acrylics
- Silicones
- Ceramics
- Glass

Works with any light-triggered chemistry:

- Free-radical chain polymerization
- Thiol-ene
- Cationic

Acrylics

Credit: Loterie et al., Nat. Com., 2020

PVA

Credit: Qiu et al., Adv. Func. Mat., 2023

Thiol-ene hydrogels

Credit: Rizzo et al., Adv. Mat., 2021

Ceramics

3D printed
green bodyPolymer Derived
CeramicsCredit: Kollep et al., Adv. Eng. Mat., 2022

Dental and audiology parts

Machine built with relevant print scale (5cm) for audiology and dental applications

Multi-material printing for advanced and functional studies

Perfusable constructs

Organ specific auxetic meshes

Composite mesh and VP structure

Over-printed material

Credit:

Top row: Chansoria et al., Adv. Sci. 2023 Bottom-left: Grossbacher et al., Adv. Mat., 2023 Bottom-right: Falandt et al., Adv. Mat. Tech High resolution macro-scale constructs

$80\,\mu m$ positive resolution

Credit: Loterie et al., Nat. Com., 2020

Negative resolution

Credit: Bernal et al., Adv. Mat., 2022

Current products

Specifications	
Build volume	Performance version: up to ø 12.5 mm x 25 mm height Standard version: Up to ø 6.6 mm x 25 mm height
Optical resolution	28 µmm (customizable)
Print time	15s to 60s
Light source	Performance version: 400±1 nm, 45mW/cm² peak Standard version: 405±5 nm, 35mW/cm² peak
Containers	Autoclavable glass + plastic lid
Materials	hydrogels, acrylics, silicones
Footprint	30 cm x 67 cm x 26 cm (W x L x H)
Software features	 Integrated hardware control & slicer Cloud-based high-speed computing Advanced physicochemical modeling Direct STL import

Tomolite™ v2 3D printer

Printing containers

Apparite software

Technology is covered by **7 patents**

CE FC

Proprietary software \rightarrow

 \rightarrow

Automated multi-wavelength tomographic printing and light deposition as an add-on to the Tomolite v2

Printing Up to four different automated wavelengths from 400 to 750nm

Watch video online

Summary

- Tomographic printers enable high-speed 3D printing by fabricating the whole object at once.
- As a tool for biofabrication, tomographic bioprinting enables:
 - Printing centimeter-scale constructs
 - Optical printing resolution (<100 microns)
 - High cell/organoid viability
 - High throughput
 - High repeatability
 - Multi-material printing

Contact us for further information

Contact contact@readily3d.com +41 22 570 14 82 www.readily3d.com

© 2024 Readily3D SA

Appendix Additional material

Videos

- <u>1min. product presentation</u>
- <u>5min. product presentation:</u>
- Pancreas bioprinting
- <u>Real-time Yoda demo</u>
- <u>Real-time vasculature demo</u>
- Bioprinting workflow
- High-precision printing
- <u>Complex biological structures</u>

Papers

- Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liver-Like Metabolic Biofactories
- Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds
- <u>Tomographic volumetric</u> <u>bioprinting of heterocellular bone-</u> <u>like tissues in seconds</u>
- <u>Optimized Photoclick (Bio)Resins</u> for Fast Volumetric Bioprinting
- <u>High-resolution tomographic</u>
 <u>volumetric additive manufacturing</u>
- <u>Tomographic Volumetric Additive</u> <u>Manufacturing of Silicon</u> <u>Oxycarbide Ceramics</u>