
1

Fast optimization of additively manufactured metallic parts with 

a combination of adaptive feedforward control and numerical 

simulation (SMARTAM) 

Industrial Partners:

PX Group, Heraeus Materials, Patek Philippe, Swatch Group

Academic Partners:

• EPFL : L. Schlenger, J. Jhabvala, E. Boillat, R. Logé
• Empa : G. Masinelli, J. Yang, C. Leinenbach, K. Wasmer, P. Hoffmann
• PSI : S. Gaudez, S. Van Petegem
• ETHZ : S. Stanko, M. Stoica, J. F. Löffler



2

Overview - Motivation
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Laser Powder Bed Fusion (LPBF):

layer by layer deposition additive manufacturing technique

• Single sets of process parameters are defined for a given part despite its
intricate geometry

• Heat flux influenced by geometrical features

• Variations in melt pool geometry

• Formation of defects

• Uncontrolled local thermal history undesirable microstructures

Part specific and location specific process parameters can be derived 
from numerical simulations and adaptive feedforward control. 

REMEDY

Continuation of the PREAMPA (SFA) project
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Overview – Proposed solution

LPBF processModel-based feedforward
optimization

Monitoring-based feedback 
adaptation



Project Work Flow
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Macro-scale model

Temperature
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Temperature

• Three media (solid, 
powder and liquid) 
with T dependent
properties

• Path-dependent 
remeshing

Mesoscale model



Objective: fully control the melt pool dimensions

Important variables:

• P = laser power

• V = laser velocity

• T0 = initial temperature

• w = laser spot size
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The metamodel : an approach to minimize the number of simulations

Numerical simulation Design of Experiments

15 simulations (P, V, T0)
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Recently : adding the laser beam spot size w

 translate process parameters from one machine to another

 Only 25 simulations needed



Experimental verification

• 316L stainless steel and Ti-6Al-4V

• Spot size w of 30µm

• T0 = room temperature

• Min. 9 observations per process 

parameter combination
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Lack of fusion processing maps

• Metamodel predictions

 Fast simulations to efficiently

estimate lack of fusion (LoF) defects, 

geometrically.

 For given (P,V,T0,w) and defined

scanning strategy

• Process parameter maps indicating

lack of fusion (LoF) content, for a wide

range of process parameters.
No LoF
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αLiquid = 0.28

αPowder = 0.60

αBulk = 0.39
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Establishing the global laser absorption coefficient

Fraction of laser intensity

on the liquid
Fraction of laser intensity

on the powder bed



Project Work Flow
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Process monitoring by dual 
wavelength thermal imaging

• Conventional (single wavelength) thermal imaging

requires knowledge of the spectral emissivity of the 

surface. 

• Emissivity of a surface is a complex function of 

surface chemistry, surface roughness, physical state 

and other parameters

 very difficult to obtain reliable emissivity

data, relevant for the LPBF process. 

• Remedy: Measuring the intensity at 2 different

wavelengths allows to eliminate the emissivity from

the equation. 
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Spattering and melt pool 

oscilations during LPBF 

of Tungsten

Beam-shaping on 

Ti-6Al-4V

LPBF of 316L stainless

steel
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Optical Data Analysis Across LPBF Parameters
Evaluating Optical Emission and Reflection Variability

• Dual-Channel Analysis: Optical Emission 
and Reflection for LPBF process insights.

• Sensors: Si Photodiodes and InGaAs
sensors.

• Speed & Optical Correlation: Analysis of 
how laser speed affects optical responses, 
key for process control.

• Observation: A clear peak in optical 
emission and a trough in reflection are 
indicative of the transition from keyhole to 
conduction mode.

Evident peak in optical emission and bottom in optical reflection signaling regime 
transition: from keyhole to conduction
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keyhole

keyhole conduction

conduction



Real-Time Control of Melt Pool Geometry
Harnessing Optical Signals for Precision in LPBF

• Optical emission: Significant correlation 
with Surface Area, pivotal for melt pool 
geometry control.

• Correlation for Quality: With a correlation 
close to 1, real-time monitoring of optical 
emission becomes a reliable indicator for 
maintaining the precise size of the melt pool, 
ensuring the integrity of printed details.

• Process Optimization: This high correlation 
allows for predictive adjustments during 
printing, enhancing the quality and detail of 
LPBF-manufactured components.

 planned in 2024
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In-situ synchrotron X-Ray imaging of SS316L LPBF with W tracers at TOMCAT, PSI

Experimental Quantification of melt pool dynamics
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In-situ synchrotron X-Ray imaging of SS316L LPBF with W tracers at TOMCAT, PSI

Experimental Quantification of melt pool dynamics

100 μm100 μm
t0 + 0.13 ms t0 + 0.4 ms

Coexistence of outward (red) and inward (black) flows in keyhole mode

Key findings:

• The presence of inward Marangoni flow due to surfactant contaminations in commercial stainless steel powder

• Shift of conduction-keyhole threshold towards higher energy input as a result of inward Marangoni convection

• High-resolution quantification of melt pool dynamics as valuable references for CFD modeling

• Insights for further research to explore the pore-free process window by controlling the melt flow directions
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The importance of calibrating temperature-dependent surface tension coefficient

CFD modeling of LPBF with OpenFOAM (in progress)

(a) Surface tension – Temperature relationship (C.X. Zhao et al., Acta Materialia, 
2010); (b-d) Simulated melt pool temperature and flow flied.
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Key influences:

• More realistic melt flows

• Changes in melt pool temperature and 

dimensions (deeper as more inward flows)

• Potential impacts on keyhole’s formation

Next steps:

• Multiple reflections module

• Impact of realistic powder distribution
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TTT-diagrams of Bulk Metallic Glasses

Štefan Stanko, Laboratory for Metal Physics and Technology, ETH Zürich

• TTT diagrams measured to investigate crystallization kinetics 
of BMGs in conditions close to those simulated in LPBF

• Variations were found within powder samples and from one 
powder to another

 BMG behavior very sensitive to thermal history

 Used for assessing accuracy of thermal modelling

TTT diagram
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• TTT diagram measured in situ in a synchrotron X-ray 

beam with an optimized set-up

• Better reproducibility achieved but sample 
degradation cannot be completely avoided

• Design and construction of a steel vacuum 
chamber

• Allows FDSC measurements in vacuum or inert 
atmosphere

10 μm
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Conclusions

• Macroscale and mesoscale models have been developed for the prediction of thermal fields and melt
pool size and geometry in LPBF conditions

• Mesoscale model transformed into a fast metamodel (P,V,T0,w), fully calibrated for two materials

• Sensitivity to the laser beam size w means possible translation to other LPBF machines

• Prediction of Lack of Fusion maps

• The simulations can be used for a first version of the feedforward control of the process

• Adaptation can be achieved with optical measurements using optical sensors, indicating

• Transition from conduction mode to keyhole

• Changes in melt pool surface area

• More advanced feedback is now possible using dual wavelength thermal imaging

• Quantification of melt pool dynamics and first developments in CFD modelling will help improving the
simulations and the prediction of transition to the keyhole regime

• Accuracy in thermal modelling assessed based on the new TTT diagrams obtained for Bulk Metallic
Glasses (BMGs), and those to come with the new design of the FDSC device

Monitoring-based
adaptation

(2024)
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