

MICROFLUIDICS: Functional Integration for rapid realization of microreactors and bio-assays

Vivek Subramanian, EPFL
Andrew deMello, ETHZ
Patrik Hoffman, EMPA
Yaroslav Romanyuk, EMPA
Helmut Schift, PSI

Organization and Teaming Status

Materials, Extrusion Printing, and integration

Lead: Vivek Subramanian

Postdoc: Babak Mazinani (Glass development)

PhD student: Mustafa Fadlelmulla (PZT development)

Demonstrator Integration, Design Specification Lead: Andrew deMello

Scientist: Stavros Stavrakis

Materials Science and Technology

Low-temperature sintering Embossing materials support Lead 1: Yaroslav Romanyuk (Photonic Sintering) Scientist: Evgeniia Gilshtein (Photonic Sintering) Lead 2: Patrik Hoffman (Materials for embossing)

Lead: Helmut Schift

Postdoc: Muhammad Refatul Haq

Vision and Goals

What?

- Manufacturing technology for integrated microfluidics
 - Active elements,
 - gold-standard materials
 - integrated control and sensing

Why?

- Glass is king for real applications
- Integration will drive down cost and facilitate adoption for analytics

How?

Low-temperature materials and processes to allow integration of glass with metals and silicon microelectronics

Plans / Milestones

Materials

- develop a low-temperature printable glass based on a modified phosphate glass. The glass will be water-stable. Peak process temperature will be <400°C. *Early breakthrough by M24*
- develop a low-temperature printable piezoelectric material based on sol-gel PZT.

Processes and Integration

- develop an extrusion printing process to print glass microfluidics on demand. Line-edge roughness and resolution will be characterized and optimized. Early breakthrough by M24
- develop an embossing process for microfluidic-channels, including identification of a proper choice of stamp materials, geometries and processes, and tool modification. Early breakthrough by M24
- explore the feasibility of selective heating of stamps, enabling bonding without structural deformation.
- develop an inkjet + 3D printing-based process for realizing PZT-based valves.
- demonstrate photonic sintering of printed phosphate glasses and PZT valves, including the use of colored dopants to alter absorption as needed.
- explore step-by-step photonic sintering of glass. Thicker layers can be sintered if each light pulse makes the upper layer more transparent, allowing deeper light penetration until the whole layer is sintered.
- use our integrated pick and place technology based on an nscrypt 3D printer with a custom integrated pick-andplace head to attach discrete components within the monolithic fabrication process
- use our existing printed metal technology to fully wire and integrate the platform

Overall Technology demonstrator

- demonstrate a microfluidic formulator for protein processing based on integrated microfluidics
- demonstrate a programmable microfluidic platform for manipulating single cells. This will integrate conduits, chambers, valves and pumps within a monolithic platform.
- Demonstrate integration of semiconductor components to realize a flow cytometry platform.

Advanced Manufacturing

Strategic Focus Area

Initial Results: Glass

(+) Stanulate bone formation (4) Promote bone mineralisation (-) Inhibit bone resorption (A) Stimulate osteogenesis Osteoclasts (4) Combat antihacterial infection during bose regeneration

Why Glass?

- Non-porous
- Inert
- Thermally stable
- Material of choice for real biology

Disadvantage: We need a low-T glass

- Compatibility with Silicon Microelectronics
- Compatibility with Metals

Initial results: Glass that processes at <450°C, is water-stable, and ionically nonconductive

Phosphate glass

Initial Results: Glass

Glass synthesis

NBO P-O-M P-O

Ink formulation

Printing-based Integration

Step 2: Glass + Conductors

Step 3: Glass + Conductors + microfluidic channel

Initial Results: PZT Actuators

Strategic Focus Area Advanced Manufacturing

1) Formulation of PZT ink:

Summary of PZT sol-gel synthesis:

2) Verification of converted film properties:

Device structure: Si/Ti/Pt/PZT/Pt

Microfabrication of PZT cantilever

Initial Results: Extrusion printing optimization and modeling

3) Printing of ABS micropump roughness study:

Smartphone based imaging real time flow cytometry

We developed a prototype smartphone-based flow cytometer. This platform incorporates an LED, a microfluidic flow cell for viscoelastic particle plane focusing and uses the built-in camera of a smartphone to track beads in flow. The smartphone-based FC device can detect and enumerate two different bead types in a mixture

Top part: a) Original image of a mixture of 10 and 15 um beads captured with the smartphone-based imaging flow cytometer. b)The image is then processed in real time for bead size determination. c) After this step a histogram of size vs number of beads can be constructed. d) This result is validated though measurements of fluorescence intensity vs number of beads using a commercial flow cytometer. Bottom part (e-h): The same sequence of images as in the top part but in the case of 10 and 12 um beads

Upcoming tasks

Photonics methods @ Empa **UV** excimer IR laser

Absorption-tuning and photonic curing to allow very low-T processing

The combination of novel materials with hot-embossing allows high-resolution low LER patterns

Summary

Initial Results

- On track with glass materials and PZT, which are key materials for expected early breakthrough
- On track with design of demonstrator to drive integration strategy

Key Upcoming Tasks

- Embossing work has begun... reporting expected next year.
- PZT is ready for deployment in photonic curing... next step is first cross-institute task

Overall

- No deviations to report at this time
- Everything is on track or ahead of schedule

