Powder focusing for beam induced laser 3D printing

Teams complete - project on track

Copper + Silicon as powders selected

Sub-systems ready

- Powder focusing ETHZ IMES J. Dual, PhD Michael Gerlt
- Electrohydrodynamic droplet formation ETHZ LTNT D. Poulikakos, PD Patrik Rohner
- Powder drying on flight
 PSI M. Pouchon, PhD Kwanghoon Choi Empa S. Vaucher
- Simulation of liquid particle drying process EPFL LFMI F. Gallaire, PhD Shahab Eghbali
- Integration into focused laser 3-D printing system
 Empa LAMP P. Hoffmann, PD B. Lanfant
 Dr. S. Vaucher, Dr. M. Leparoux

Acoustic powder focusing

Experimental Setup

0.5 mm

0.5 mm

31.01.2020

Top: 57 μ m ± 28 μ m, Side: 89 μ m ± 25 μ m.

3D Numerical Model

EHzürich

Electrohydrodynamic printing

Micro- / nanodripping mode

- Picture above: 4 µm
- Picture on the right: 800 nm
- Dripping frequencies usually below 1 kHz

Cone jetting mode

- Nanoparticles used: Gold, 5 nm
- Nozzle diameter: 30 µm
- Stage translation speed: 0.3 mm/s
- Depending on the solvent (e.g. for water), the printing resolution is now limited by the solvent evaporation

High-throughput droplet generation and microwave resonator

High-throughput droplet generation

e at	-	- an	
	1		
		:	
		Diameter	
		≒ 100µm	
		•	
		•	
		1000 μm	

	Open V FOAM
Material	Water (20°C)
Nozzle dia.	60 µm
Flow rate	0.5 ml/min
Frequency	15 kHz
Droplet size Exp. vs. Sim	3.5%

High-throughput droplet generation (15kHz) with simulation are validated.

Loop-gap resonator microwave drying

- Problematic:
 - What is the effect of solid particles on laminar jet destabilization?
 - Methodology: Numerical Simulation
- Observations
 - Multistage non-linear modification of the pinch-off dynamics
 - **Outlook:** How to control the output of particulate jet destabilization?

Strategic Focus Area
Advanced Manufacturing

WP5 - Prototype LMD reactor modification

Axicone optical system : Ø: 20 µm, coaxial powder injection

 \bigcirc

Arnaud Mader, Briac Lanfant, M. Leparoux, P. Hoffmann