Willkommen Welcome Bienvenue

DiPrintProtect - Digitally printed temporary protective films for application in the watch industry

Annual Review Meeting 2021

Motivation

ASRH

RECHERCHE HORLOGERE COMMUNAUTAIRE

Association Suisse pour la Recherche Horlogère Swiss Association for Horological Research

- A Masking of selected areas for mechanical processing
- B Protection of finished watch parts for storage purposes
- C Protection of a complete watch for manipulation in the boutique

Aim and impact

To replace the manual application of protective coatings within the watch manufacturing cycle by a digital (drop-on-demand) printing with a subsequent traceless removal.

Industry needs / challenges: Digital printing

- Develop printable photocurable resins
- Identify suitable printing methods
- Peelable films that do not leave traces

Expected impacts:

- New masking designs with finer features down to 10 μm.
- Process automation (higher throughput and yield expected)

Approach

People and Institutions

Industrial partners

Dübendorf

Zürich Neuchâtel Lausanne

Project Organization

EMPA - Dübendorf ETH - Zürich EPFL - Lausanne

Objectives

- 1. Develop photo-reversible materials that can serve as protective coatings (ETHZ ME)
- 2. Develop nanocomposite "hard" coatings (EPFL LEPAC)
- 3. Demonstrate printability of photopolymers with a min. feature size down to 10 µm using AJP technique (EMPA TFPV-FP)
- 4. Ensure traceless removal either by dissolution or by peeling (EMPA TFPV-FP)
- 5. Explore flash lamp for non-contact removal method (EMPA TFPV-FP)

Demo1: watch dial with 2D flat shape of specific rugosity, with protective line structures (1–10 mm, linewidth down to 10 μ m) against a galvanic bath or abrasion;

Demo2: watch case with a printed or sprayed protective film (5–20 mm dimension) that can be detached by a non-contact method

First results: photopolymer synthesis

- After protocol optimization, Nitrobenzyl-diene has been **successfully synthesized** (following Radl 2015)

Resin formulation evaluation:

- Liquid resin (nitrobenzyl-diene, PETMA, and photoinitiator) formed a **stable network** with 405nm light

First results: Photo-reversible nanocomposites

Synthesis of thiol-ene nanocomposites (Commercial resins and lacquers as benchmarks)

Overview of printing methods

	Spraycoating (NadeTec ND/SP)	Dispensing (Image master Musashi)	Inkjet (PixDro LP50)	Aerosol jet (Optomec AJX-5)
Linewidth	-	40 μm	40 μm	25 μm
Viscosity	< 50 cP	up to 50000 cP	8 – 12 cP	10 – 500 cP
Precision vs Cost			Ţ	
	Precision/cost			
Equipment Snapshot		SHOTM	POXORO	COMMISSION AND A TOTAL

Yaroslav Romanyuk

Jacob Heier

Vitor Vlnieska

First results AJP

Work flow:

Photoresist

Bitumen lacqu

Acrylate lacque

-Printabilily of commercial lacquer are not realizable.

- -Printabilily of photoresists is realizable
 - Fine and large feature coating presented reliable results
 - Fine feature coating stability: line width 30 μm
 - Satelite droplets are a side effect to live with

Outlook

ETHZ-ME

- Photocleavability is being investigated with <365nm UV-light
- Printable formulations of the resins will be prepared

EPFL - LPAC

- Acquisition of the UVC source and building of the 'photo-reversible' setup
- experiments with oNB resins and nanoparticles

EMPA – TFPV-FP

- Installation of dispensing equipment (April May 2022)
- Printability of dispensing, spraying, and inkjet techniques to be evaluated

All participants:

- Until month 24: a photo-reversible resin that can be printed on a flat metal substrate and detached by light-induced method.

Printing properties Chemistry design

DiPrintProtect
Digitally printed temporary protective films for application in the watch industry

Thank you for your attention