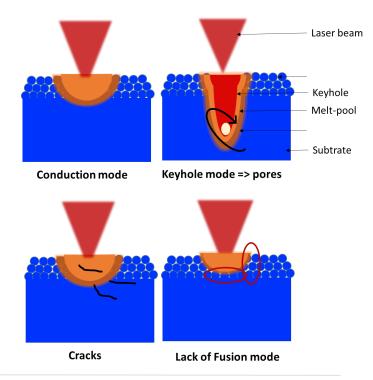

MOnitoring and CONtrol of AM metal process (MOCONT)

Revolutionizing in situ and real-time control by combining state-of-the-art sensors (acoustic) and artificial intelligence (AI)


Dr Kilian Wasmer

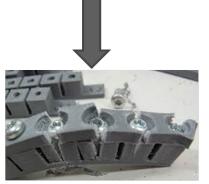
Project : technology, key challenges & objectives

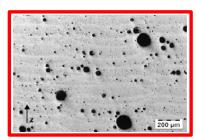
Objectives: Monitor and control defects in real-time

Key challenges: defect to be monitored

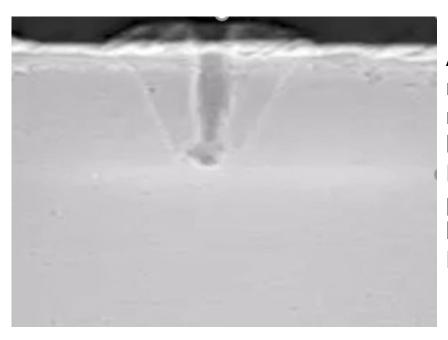
The reality

Starting the laser process


The reality

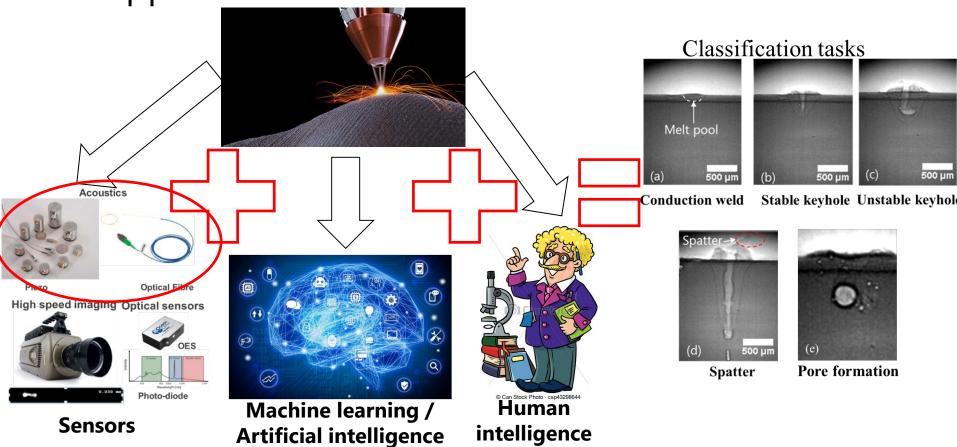

the is sample good

The sample break after the process end



Defect occuring during the process

The problems: Maybe why?


Extreme keyhole case

Aluminum plate 2mm thick, no gas shielding, room temperature keyhole experiment with defects Laser 1070 nm, pulse length 10 ms, laser spot \varnothing 30 μ m ESRF experiment at the ID19 X-ray beam

Review meeting K. Wasmer

Our approach

The team **EPFL**

ML specialist

Empa


Materials Science and Technology X-ray specialist

Empa

ML consultants

LPBF specialist

Mrs Rita DRISSI DAOUDI

Dr Annapaola **PARRILLI**

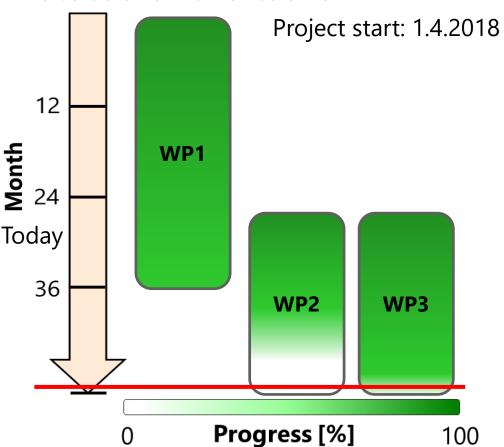
Dr Pavel **TRTIK**

MASINELLI

Dr Sergey **SHEVCHIK**

Shadow players

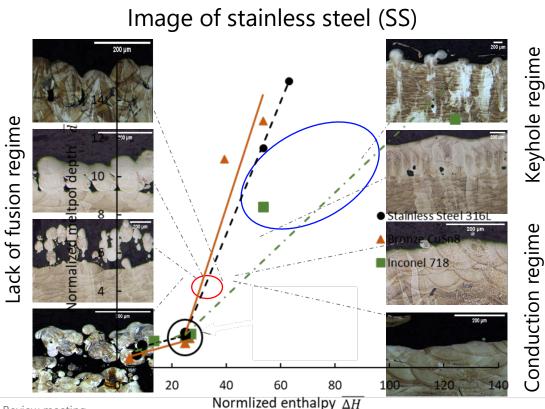
Main players



Dr Kilian Wasmer

Dr Robert Zboray

Status of the tasks



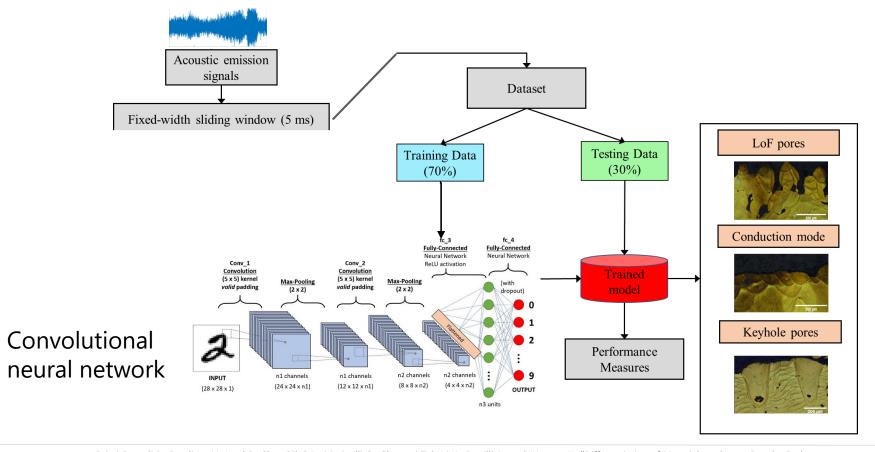
Task 1 Develop a signal processing unit able to classify with high confidence the type of defects, including various contents of porosity

Task 2 Localise cracks due to residual stresses

Task 3 Develop a universal regressor model able to predict the creation of a defect

Process regimes

- Elaborated process maps for 3 **materials** (SS, bronze, and Inconel)
- Performed specific experiments for all three materials and recorded AE signals
- Have databases for features analyses and ML algorithm developments


Review meeting

K. Wasmer

Process parameters

		Stainless s	steel		Bronze			Inconel	l
Regimes	Laser	Scan speed	Normaliz ed	Laser	Scan speed	Normali zed	Laser	Scan speed	Normaliz ed
LoF pores	(W)	(mm/s)	enthalpy	(W)	(mm/s)	enthalpy	(W)	(mm/s)	enthalpy
	50	350	7	50	350	4.4	50	350	13.4
Conduction mode	70	400	9.2	110	400	9.2	36	400	<u>9.2</u>
	180	350	25	300	350	26.5	100	350	27
	135	200	25	215	200	25	69	200	25
	450	350	63	450	350	39.4	450	350	124
Keyhole pores	250	150	53.5	396	150	53.5	127	150	53.5

Schematic flow for classification

Classification results

Origin of the acoustic emission features

LR (Bold), SVM (Normal), RF (Italics), and CNN (Bold Italics). All values in %.

	LoF pores			Ke	yhole po	ores
Ground truth						
Classification accuracy	Stainless steel	Вгопге	Inconel	Stainless steel	Вгопге	Inconel
	99	1	0	95	0	5
Stainless steel	98	1	1	96	0	4
	100	0	0	97	0	3
	100	0	0	97	3	0
	0	98	2	0	100	0
Bronze	0	96	4	0	100	0
Dionze	1	99	0	0	100	0
	1.5	97	1.5	5	95	0
	1	0	99	5	1	94
7	1.5	1.5	97	9	1	90
Inconel	1	1	98	11	1	88
	0	1	99	1	0	99

Cross alloy classification

RF. All values in %

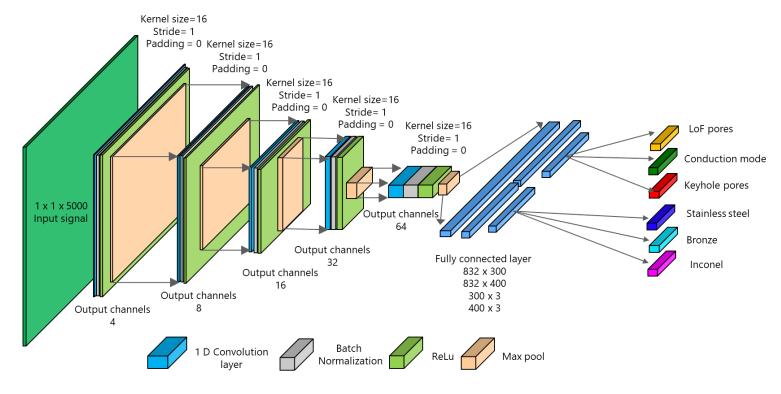
Stainless steel + Bronze on Inconel Good case (80%)							
Ground truth Classif. accuracy [%]	LoF pores	Conduction mode	Keyhole pores				
LoF pores	61	0	39				
Conduction mode	0	93	7				
Keyhole pores	6	6	88				

One on one alloy classification

LR (Bold), All values are in %.

	Sta	inless ste	eel		Bronze			Inconel	
Ground truth Cassif. accuracy [%]	LoF pores	Conduction mode	Keyhole pores	LoF pores	Conduction mode	Keyhole pores	LoF pores	Conduction mode	Keyhole pores
LoF pores	92	0	8	100	0	0	99	0	1
Conduction mode	0	91	9	0	99	1	2	98	0
Keyhole pores	5	7	88	1	2	97	1	2	97

One on all alloy classification


LR (Bold). All values are in %.

Ground truth Classif. Accuracy [%]	LoF pores	Conduction mode	Keyhole pores
LoF pores	97	3	0
Conduction mode	3	92	5
Keyhole pores	2	5	93

12

Classification results

CNN architecture for multi-label classification

Classification results

Multi-label classification

Left table: classification accuracy on the regimes. Right table: classification accuracy on the materials.

All values are in %.

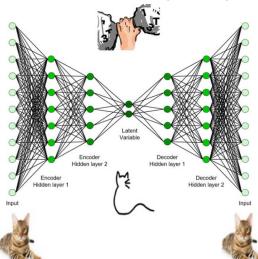
	Process	regimes	(93.3%)
Ground truth Classif. accuracy [%]	LoF pores	Conduction mode	Keyhole pores
LoF pores	93.0	6.5	0.5
Conduction mode	6.0	91.0	3.0
Keyhole pores	0.5	3.5	96.0

Dungang magiman (02 20/)

	Materials (94.0%)					
Ground truth Classif. accuracy [%]	Stainless steel	Вгопге	Inconel			
Stainless steel	97.0	2.0	1.0			
Bronze	2.0	91.0	7.0			
Inconel	0.5	5.5	94.0			

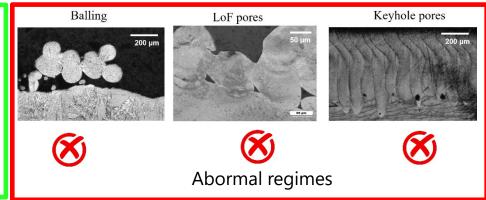
Matariala (04 00/)

14

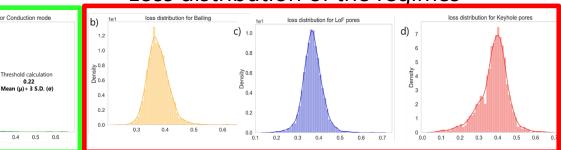

Semi-supervised approach

No pores

Normal regime

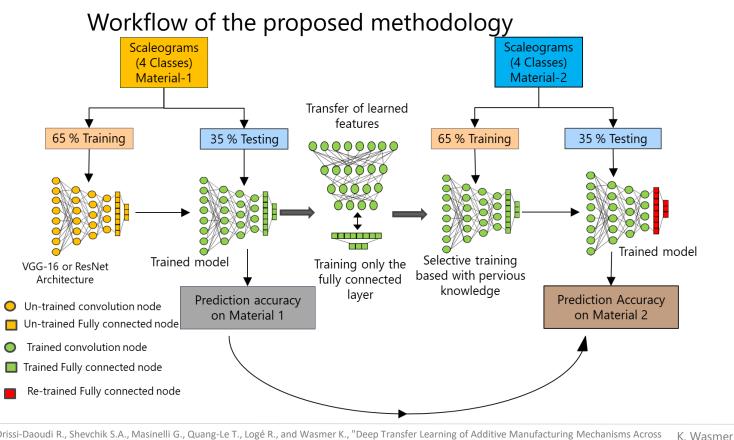

loss distribution for Conduction mode

Autoencodeur principle



trained The CNN model based **GANomaly** on classified 2'800 signals with higher than accuracy 97%.

Process regimes



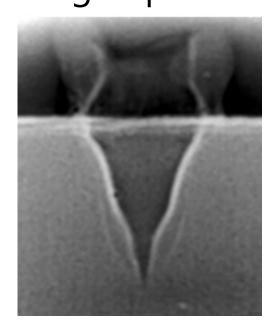
Loss distribution of the regimes

Loss values higher than 0,22 (Mean + 3S.D) are considered as anomaly

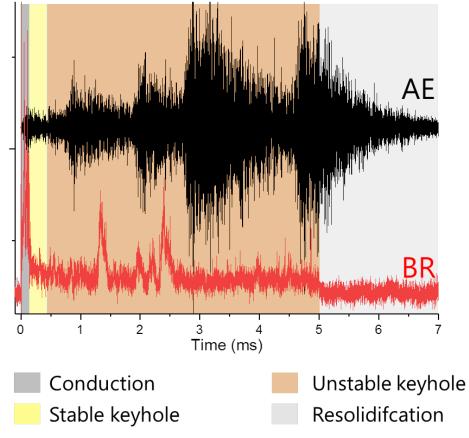
Deep transfer learning approach

Deep transfer learning approach

One on one alloy classification

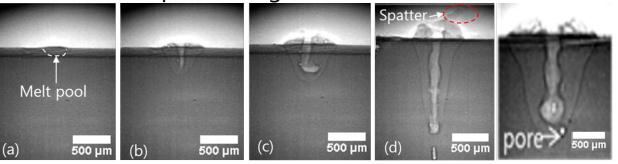

Ground truth Classif. accuracy [%]	Balling	LoF pores	Conduction mode	Keyhole pores
Balling	97.75	0.00	1.75	0.50
LoF pores	3.00	95.00	1.50	0.50
Conduction mode	0.75	0.25	96.75	2.25
Keyhole pores	0.75	0.25	4.25	94.75

Deep transfer leaning to bronze classification


a)	a) Full dataset (Mode I)							
Ground truth Classif. accuracy [%]	Balling	LoF pores	Conduction mode	Keyhole pores				
Balling	94.00	3.50	2.50	0.00				
LoF pores	2.00	76.5	21.00	0.50				
Conduction mode	3.00	17.75	75.75	4.00				
Keyhole pores	0.00	1.50	5.00	93.50				

b) 50% of the dataset (Mode II)							
Balling	LoF pores	Conduction mode	Keyhole pores				
89.00	5.50	5.25	0.25				
3.00	74.50	20.75	1.75				
2.50	21.25	72.00	4.25				
0.00	1.75	7.25	91.0				

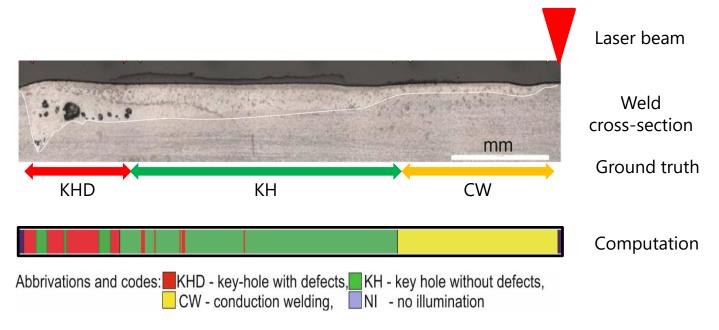
High-speed X-ray observation


Aluminum plate 2mm thick, no gas shielding, room temperature Keyhole experiment with defects Laser 1070 nm, pulse length 10 ms, laser spot \varnothing 30 μ m ESRF ID19 X-ray beam

18

X-ray classification of process regimes and repair

Laser process regimes classified


Conduction weld	Stable ke	eyhole Unst	table keyhole	Blowou	t	Pore
Ground truth <i>Classification</i>	Cond. welding	Stable keyhole	Unstable keyhole	Blowout	Pore	
Conduction welding	(88/99) 99	(7/1) 1	(5/0) 1	(0/0) 0	(0/0) 0	
Stable keyhole	(5/1) 0	(82/91) 93	(13/8) 6	(0/0) 1	(0/0) 0	Cla
Unstable keyhole	(4/0) 0	(5/2) 6	(87/92) 94	(4/6) 0	(0/99)0	
Blowout	(0/0) 0	(0/0) 0	(5/1) 1	(95/99) 99	(0/99) 0	
Pore	(0/0) 0	(10/8) 12	(10/7) 0	(7/0) 0	(73/99) 88	

Ground truth Classification	Pore formation	Pore removal
Pore formation	87	13
Pore removal	23	73

Table of classification results for the different quality categories. (optical sensor / acoustic sensor) Both sensors together

Review meeting K. Wasmer

Today's available at Empa for welding & AM in Dübendorf

Today, time resolution is around 25 ms and so the spatial resolution for defects is around 30 μ m. For the time resolution, we are working to go down in tens of us

Review meeting K. Wasmer 20

Summary & outcome of this project

- Laser processing: combining sensors (AE, optical), and ML, we have:
 - Detected and classified process regimes terms of quality with high confidence
 - Could not develop a universal data driven ML models
 - Develop alternatives strategies in development of ML models
 - Used semi-supervised methods to save data acquisition and computer time
 - Developed transfer know-how methods across material and machine
 - Detected and classified stable and unstable process (important for control loop)
 - Demonstrated potential for monitoring of repair of AM parts
 - Develop a new approach for 3D crack reconstruction in mechanical workpieces
- 6 peer-reviews papers, 11 conferences (5 invited)
- New SFA-AM project SMARTAM => move from data driven to physics driven ML models (Combining PREAMPA and MoCont)
- Several new projects on monitoring and control for other laser processes

Review meeting K. Wasmer

Thank You For Your Attention!

