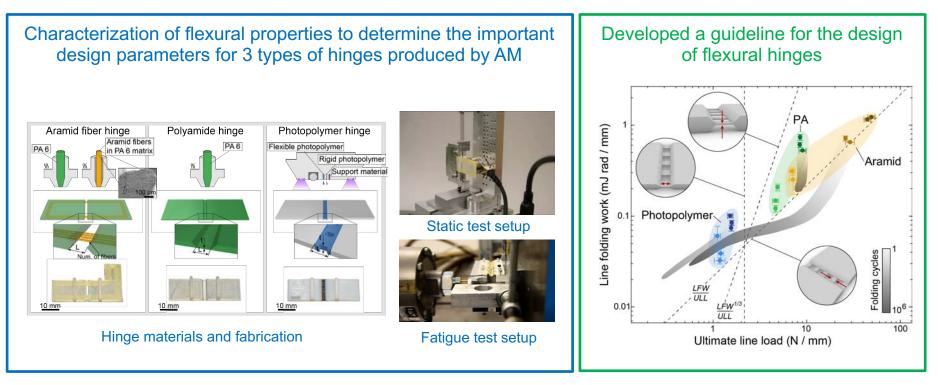


Sustainable Design of Multi-Functional, Multi-Material Parts for AM

Prof. Kristina Shea (ETH Zurich, MAVT, EDAC)Prof. Paolo Ermanni (ETH Zurich, MAVT, CMASLab)Prof. Jamie Paik (EPF Lausanne, RRL)Prof. Ralph Spolenak (ETH Zurich, MATL, LNM)

Goal of the Project

- Digitally design and 3D print lightweight, reconfigurable and active structures and robots.
- Use less material, require no assembly, and use fewer different materials to ease recyclability.
- Adapt to the environment and task thus prolonging lifespan and exhibit increased durability for industrial relevance.



Work Packages

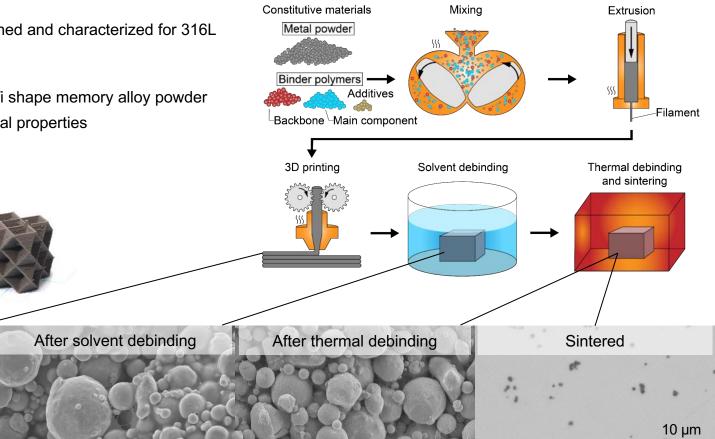
- 1. Material characterization and design of multi-material joints and hinges (LNM + RRL)
- 2. Design of sustainable, lightweight, multi-material structures and parts (CMASLab)
- 3. 3D printed and "drop in" actuation systems for distributed, active surfaces and structures (**RRL**)
- 4. Computational design and optimization methods for 4D printing (EDAC)

1. Material characterization and design of multi-material joints and hinges (LNM + RRL)

M Wagner, JL Huang, P Okle, J Paik, R Spolenak, "Hinges for Origami-Inspired Structures by Multimaterial Additive Manufacturing", *Materials & Design* (2020): 108643.

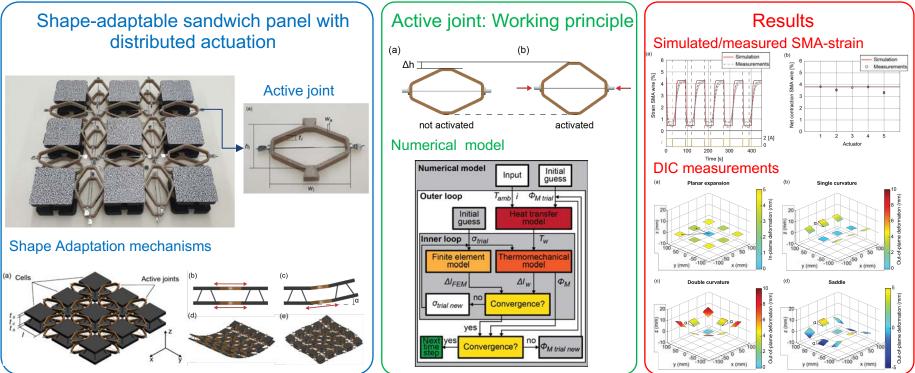
3D Printing of Shape Memory Alloys (LNM)

Current project status:


The process was established and characterized for 316L stainless steel

Next:

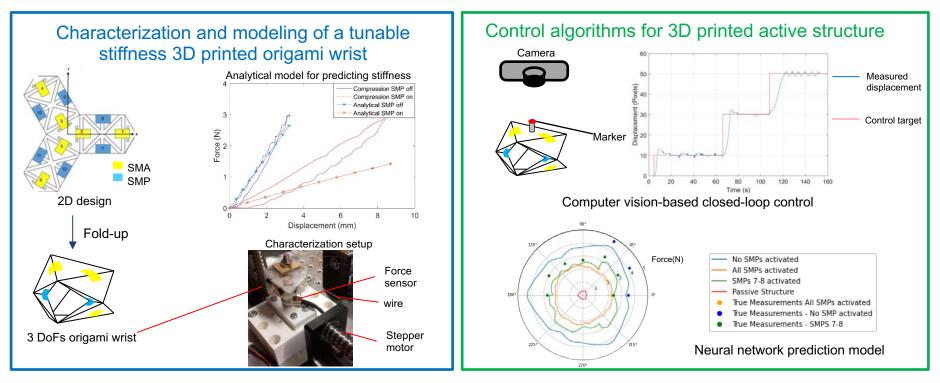
5 mm


- Substitution steel with NiTi shape memory alloy powder .
- Characterization of material properties .
- Fabrication of actuators .

As printed

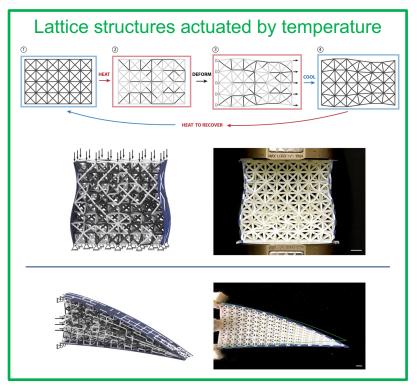
EPFL

2. Design of sustainable, lightweight, multi-material structures and parts **(CMASLab)**

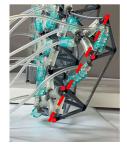


O. Testoni, S. Christen, S. Bodkhe, A. Bergamini and P. Ermanni, "A novel concept of a modular shape-adaptable sandwich panel with distributed actuation", Journal of Intelligent Materials Systems and Structures, 2022

EPFL



3. 3D printed and "**drop-in**" actuation systems for distributed, active surfaces and structures (**RRL+LNM**)


4. Computational design and optimization methods for 4D printing (EDAC)

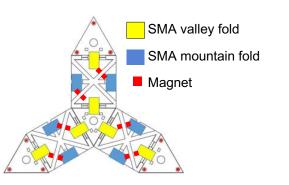
T S Lumpe, K Shea, "Computational Design of 3D Printed Active Lattice Structures for Reversible Shape Morphing", *Journal of Materials Research*, 36(18): 3642-3655, 2021.

Lattice structures actuated by pressure

Hinging due to optimized actuator placement within a lattice

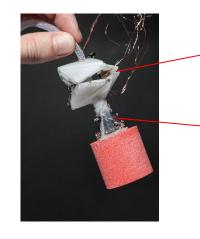
Linear and parabolic deformation induced by pneumatic actuators

C du Pasquier, K Shea, "Actuator placement optimization in an active lattice structure using Generalized Pattern Search and verification", *Smart Materials and Structures, vol.* 30: no. 11, pp. 115007, 2021.


17.03.22

Case study - 1: An adaptable robotic origami gripper

Concept: An adaptable robotic origami gripper that generates **multiple modes** of actuation for pick-andplace of objects with variable shape

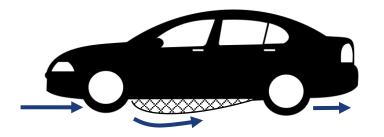

By changing the configuration of the functional components, we can achieve:

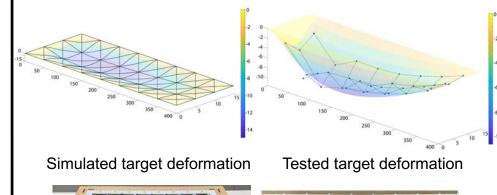
- Variable stiffness
- Variable range of motion
- Resistance for external loading
- Self-assembly

Achievable properties				
Max. orientable angle	37°			
Max. lifting load	5 N			
Stiffness changes	250%~300%			

- Origami wrist

Suction gripper

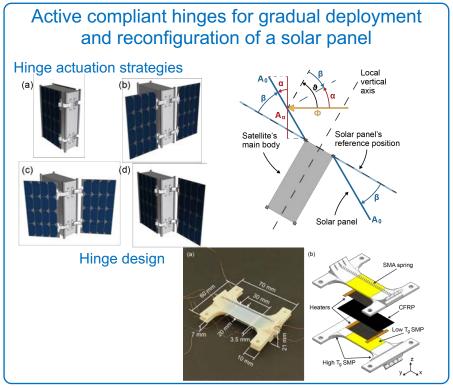

4D printed self-assembly origami wrist


autoneum EPFL

Case study - 2: Deformable underbody for an automobile (*Collaboration with Autoneum*)

Concept: Overlay the underbody of a car with a **varying stiffness** mesh to optimize it's deformation at **different speed thresholds for aerodynamics**

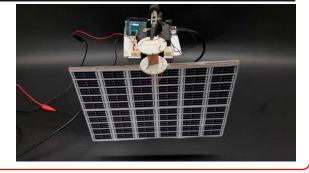
Desired Properties				
E-Modulus Range	Tension: 450 - 1400 MPa Bending: 200 - 1100 MPa			
Temperature Range	-20 °C to 60 °C			
Panel Area	0.88 m ²			
Panel Weight	800 g			
Panel Dimensions	1500 x 570 x 40 mm			



Test rig modelling pressure with distributed weights; pictured: 150g

Case study - 3: Active compliant hinges for reconfigurable solar panels

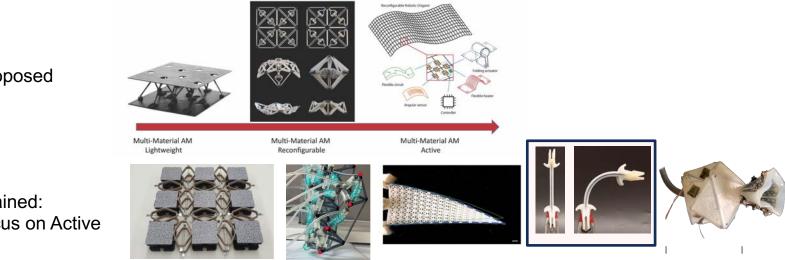
(Collaboration with Orbitare)



Results

Energy collected, consumed, net energy gain and allowable actuation time for the considered actuation strategies

	Collected energy	Consumed energy	Net energy gain	Allowable actuation time
Fixed	116 kJ	0 kJ	0 kJ (+ 0%)	-
Sun-tracking	217 kJ	37.8 kJ	63.2 kJ (+ 54%)	-
Three steps	198.5 kJ	9.0 kJ	73.5 kJ (+63 %)	1740 s
Five steps	212.5 kJ	13.2 kJ	83.3 kJ (+72%)	870 s


Prototype: Rotation with solar panel (video)

O. Testoni, T Lumpe, J.L. Huang, M. Wagner, S. Bodkhe, Z. Zhakypov, R. Spolenak, J. Paik, P. Ermanni, L. Muñoz and K. Shea, "A 4D printed active compliant hinge for space applications using shape memory alloys and polymers", Smart Materials and Structures, 30(8):085004, 2021.

ETH zürich Summary

- Several approaches investigated for 3D/4D printed, multi-material active structures and robots
- Effective collaboration between the groups resulting in three, joint journal papers
- Active involvement and support from industry partners
- Deep-dive workshop conducted with industry partners Autoneum, Orbitare, and PKNM solutions conducted between 25 02 2019 – 01 03 2019

Proposed

Attained[.] Focus on Active

17.03.22

EPEI

I.

EXTRAS